

Week 11: System Design and Polar Diagrams

Mahmut Selman Sakar

Institute of Mechanical Engineering, EPFL

Bode Form of the Transfer Function

- Components of transfer functions

1. *constants* (gain)

2. $(j\omega)^n$

3. $(j\omega\tau + 1)^{\pm 1}$

$$4. \left[\left(\frac{j\omega}{\omega_0} \right)^2 + 2\zeta \frac{j\omega}{\omega_0} + 1 \right]^{\pm 1}$$

5. $e^{-j\omega\tau}$ (delay)

- Break points (corner frequency)

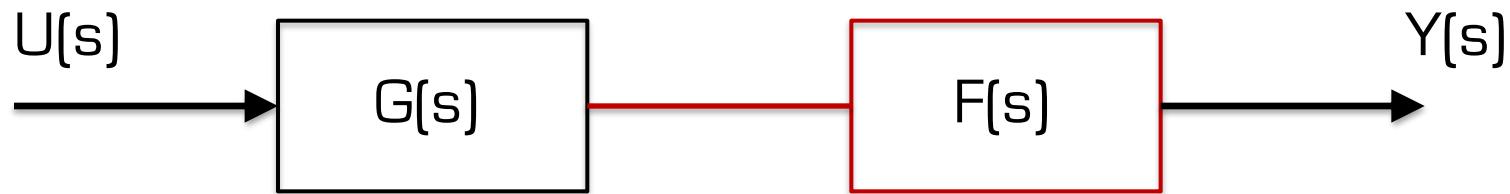
$$2. \omega_b = 1/\tau$$

$$3. \omega_b = \omega_0$$

- Bandwidth and Cut-off frequency

Filter Design

- The objective is to modify certain characteristics of system response
 - Magnitude and phase at a certain frequency
 - **Low-pass filter**: cut unwanted high-frequency signals
 - **High-pass filter**: cut unwanted low-frequency components
 - **Band-pass** and **notch filter**: attenuate specific frequencies
 - **All-pass filter** (phasor effect): only change phase



Example

Consider a mechanical system described by the following differential equation. The system is initially at rest.

$$\ddot{y}(t) + \dot{y}(t) + y(t) = 2u(t)$$

- a) Find the transfer function $G(s)$ of the system and sketch the Bode plot.
- b) We would like to design a first order filter $F(s) = \frac{K}{\tau s + 1}$ in a way that the new system with the transfer function $G'(s) = G(s) \times F(s)$ has magnitude $|G'(j\omega)| = 1$ and phase angle $\phi = -3\pi/4$ at frequency $\omega = 1$.

Example

a) The transfer function can be calculated as:

$$G(s) = \frac{2}{s^2 + s + 1}$$

The second order term has a natural frequency of $\omega_0 = 1\text{rad/sec}$, the damping ratio is $\zeta = 0.5$, and the gain is 2. The resonance frequency is $\omega_r = \omega_0\sqrt{1 - 2\zeta^2} = 0.707$. The resonant peak is $R(\omega_r) = \frac{2}{2\zeta\sqrt{1 - 2\zeta^2}} = 2.31$.

Example

b) The filtered system is given by:

$$G'(s) = \frac{K}{\tau s + 1} \frac{2}{s^2 + s + 1}$$

The magnitude of the sinusoidal transfer function at $\omega = 1$ must be 1.

$$|G'(j\omega)| = \frac{2K}{\sqrt{\tau^2\omega^2 + 1} \sqrt{(1 - \omega^2)^2 + \omega^2}} \rightarrow |G(\omega = 1)| = \frac{2K}{\sqrt{1 + \tau^2}} = 1$$

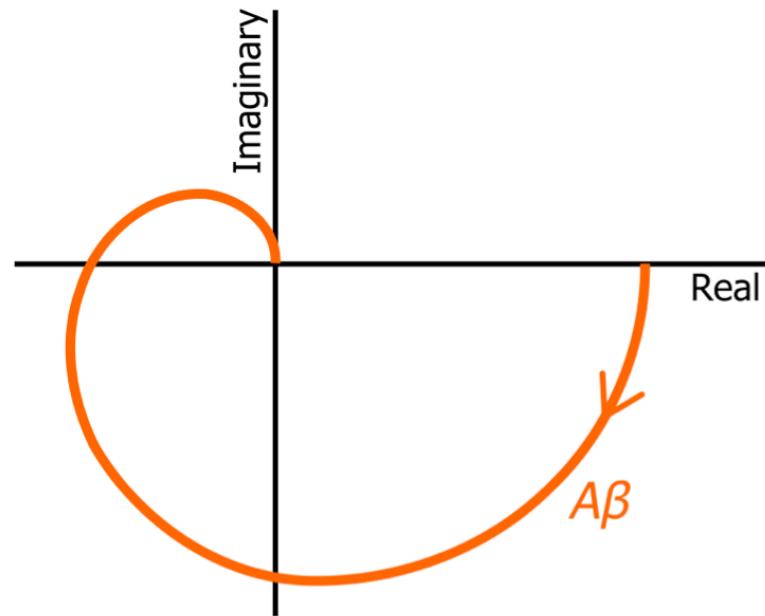
And the phase angle of the sinusoidal transfer function at $\omega = 1$ must be $-3\pi/4$.

$$\phi(\omega = 1) = -\pi/2 - \arctan(\tau) = -3\pi/4$$

As a result, $\tau = 1$ and $K = \sqrt{2}/2 = 0.707$.

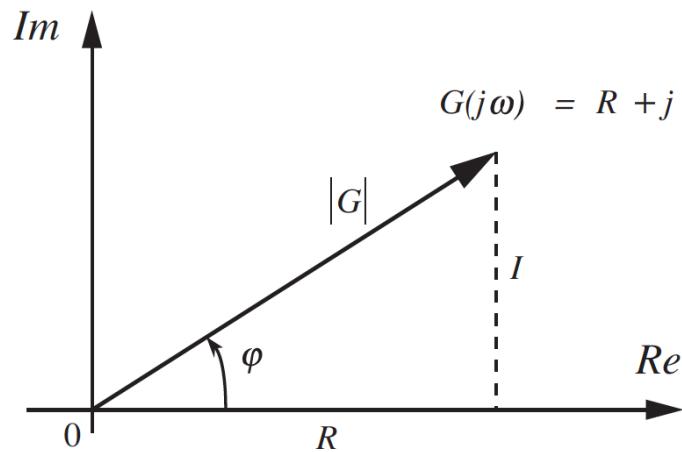
Nyquist Plot (or Nyquist Diagram)

- Commonly used to assess the stability of a system
 - Nyquist stability criterion
- In Cartesian coordinates, the real part of the transfer function is plotted on the X axis, and the imaginary part is plotted on the Y axis.
- The frequency is swept as a parameter, resulting in a plot based on frequency.



Nyquist Plot

- Magnitude and phase angle on the same graph
- Polar representation (Argand Diagram)



Nyquist Plot

- The frequency response (sinusoidal transfer function) $G(j\omega)$ is plotted on the complex plane as a function of ω
- It is convenient to sketch a Bode plot first, so that we can have a good idea of what the polar plot looks like
- Important considerations
 - Where does the plot intersect with the **unit circle**

$$|G(j\omega)| = 1$$

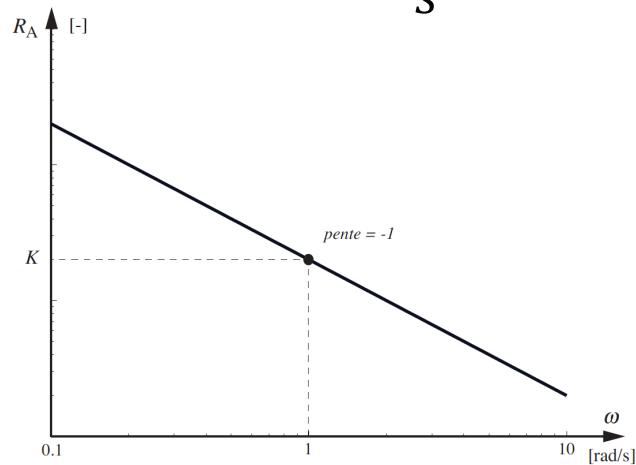
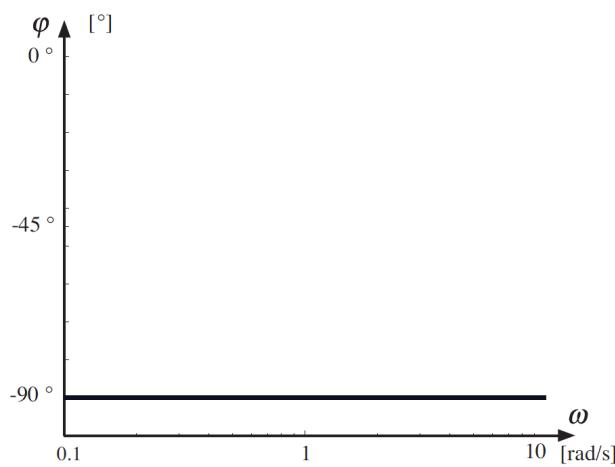
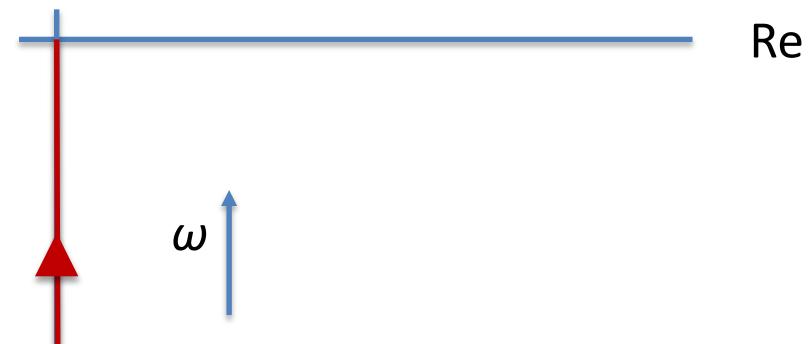
- Where does the plot cross the **real axis**

$$\arg(G(j\omega)) = n \cdot 180^\circ$$

Examples

$$G(s) = \frac{1}{s}$$

$$G(j\omega) = \frac{1}{j\omega} = -j \frac{1}{\omega}$$

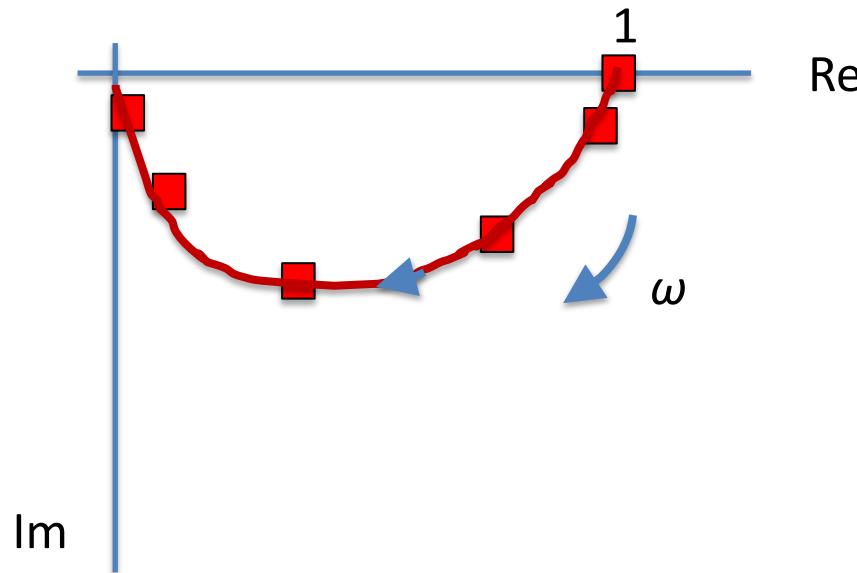
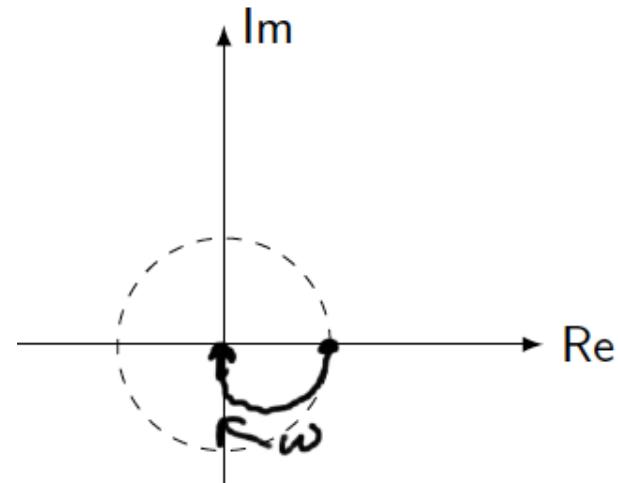


Examples

$$G(s) = \frac{1}{s + 1}$$

$$G(j\omega) = \frac{1}{j\omega + 1} = \frac{1}{1 + \omega^2} - j \frac{\omega}{1 + \omega^2}$$

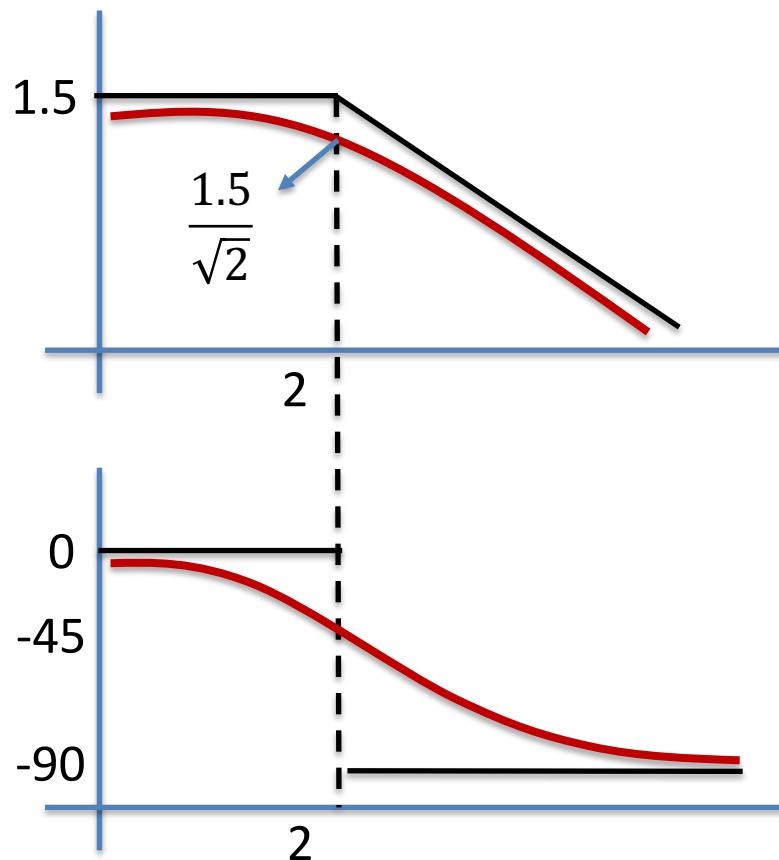
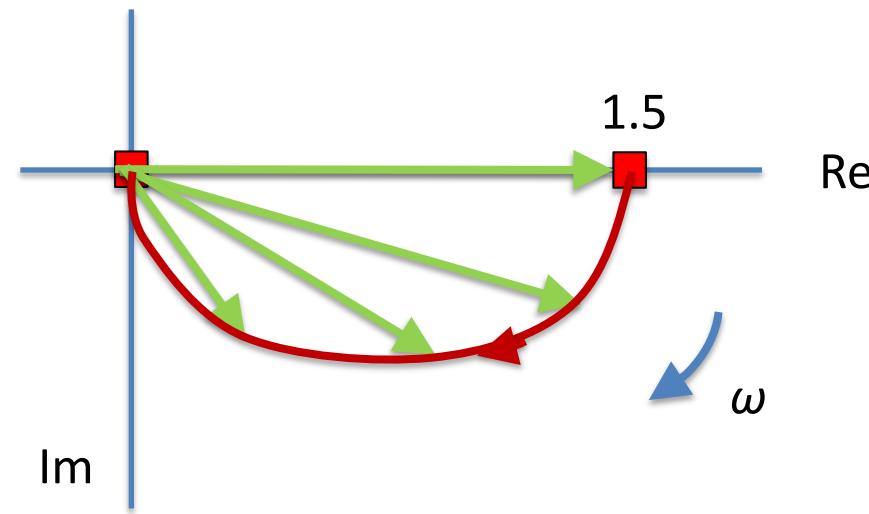
Frequency	0.1	0.5	1	2	10
$G(j\omega)$	$0.99-j0.1$	$0.8-j0.4$	$0.5-j0.5$	$0.2-j0.4$	$0.01-j0.1$



Examples

$$G(s) = \frac{3}{(s + 2)}$$

- First sketch the Bode plot
- Mark the magnitude while following phase angle

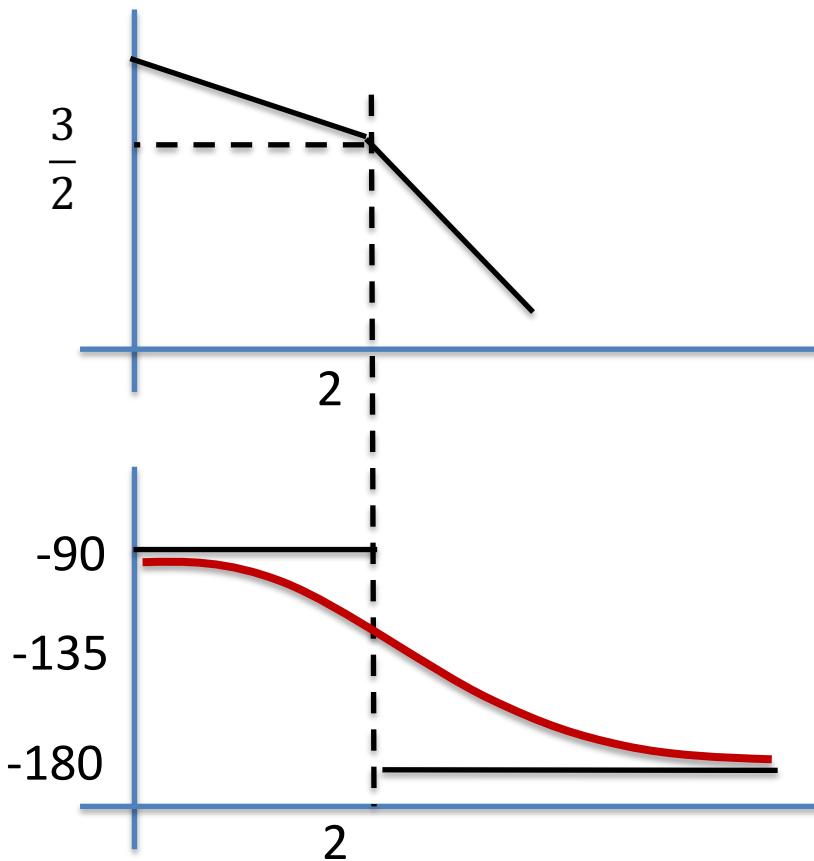
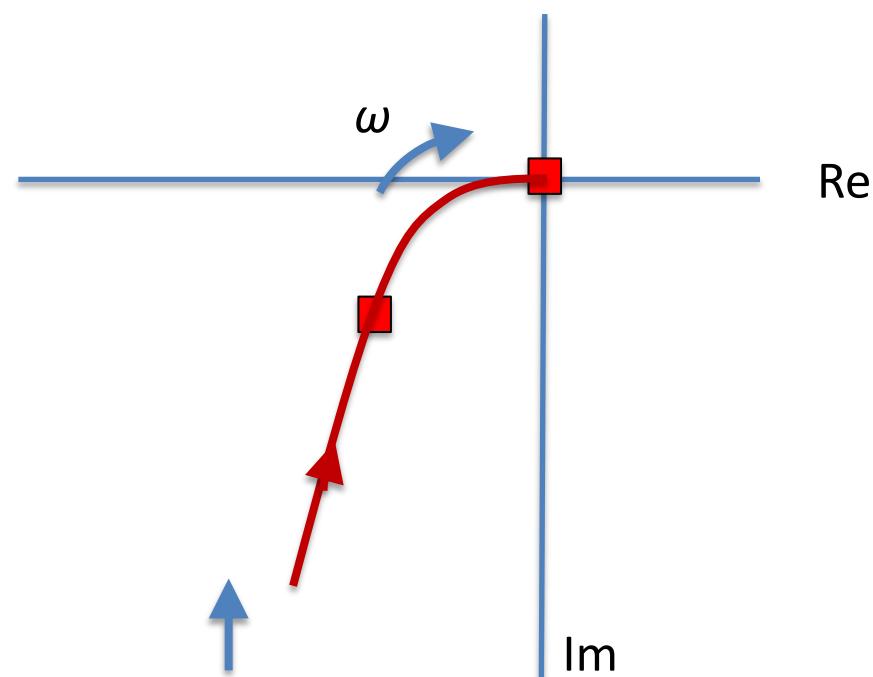


Guidelines for quick sketches

- We want to sketch Nyquist diagram from the Bode diagrams
- Phase is decreasing (or becoming negative)
 - Plot is moving clockwise
- Phase is increasing
 - Plot is moving counterclockwise
- Magnitude is decreasing
 - Plot is moving towards the origin
- Magnitude is increasing
 - Plot is moving away from the origin

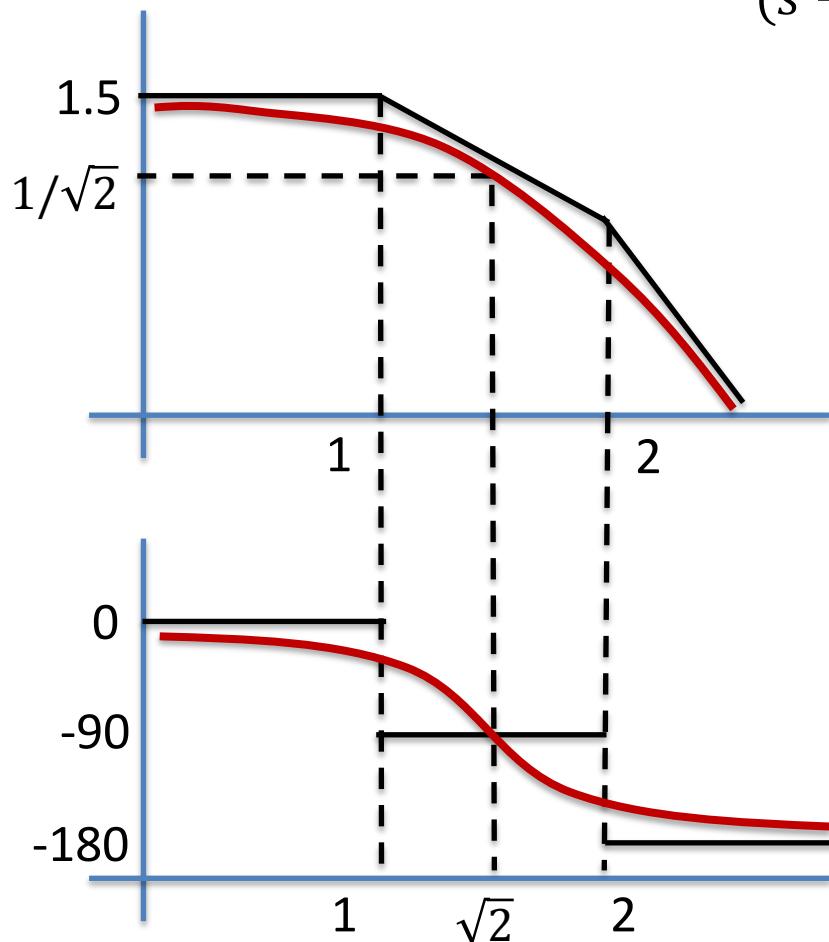
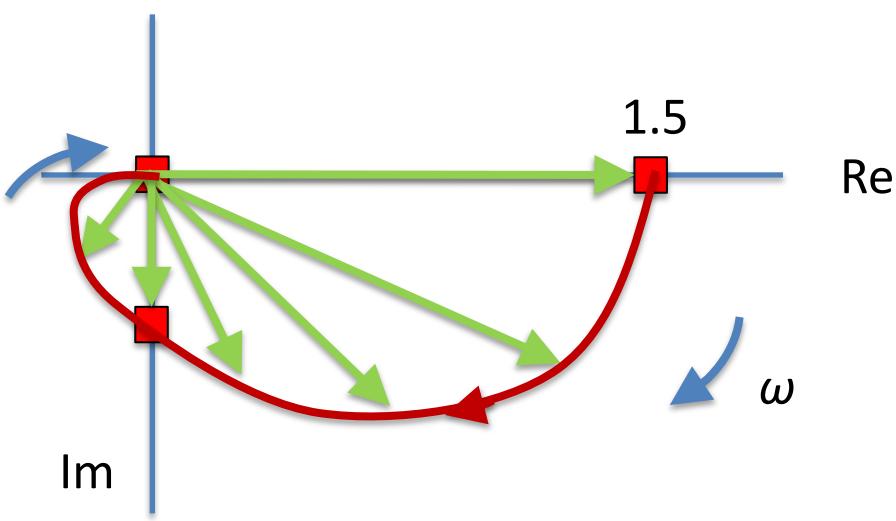
Examples

$$G(s) = \frac{3}{s(s + 2)}$$



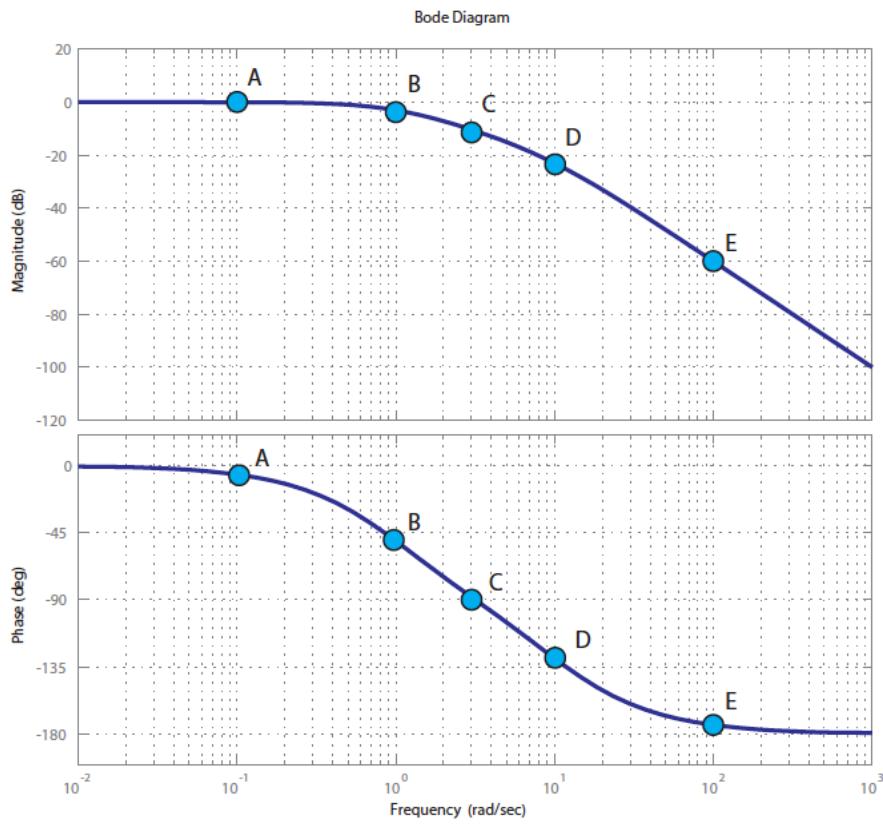
Examples

$$G(s) = \frac{3}{(s + 1)(s + 2)}$$

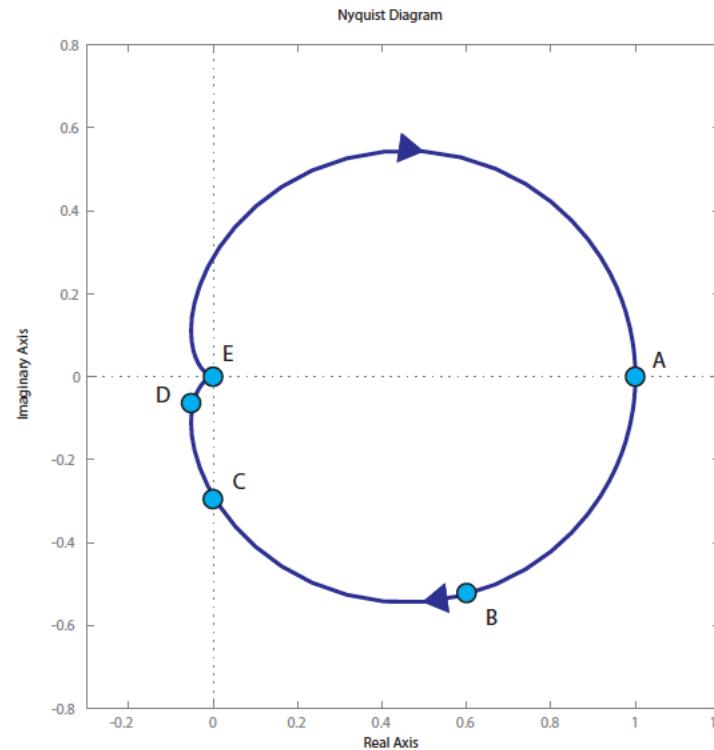


Examples

$$G(s) = \frac{1}{(s + 1)(0.1s + 1)}$$



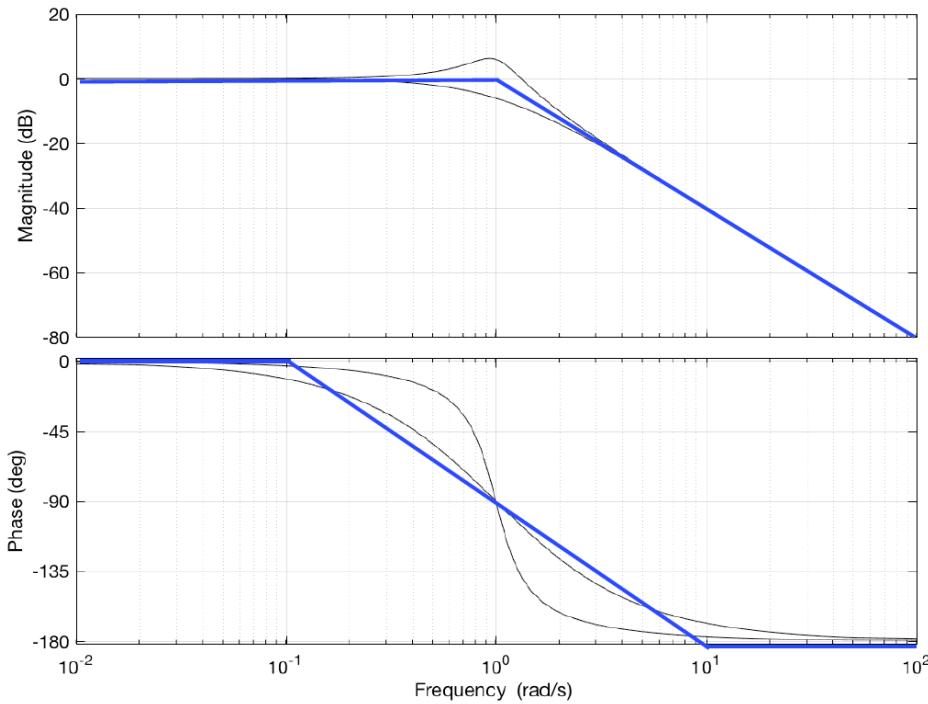
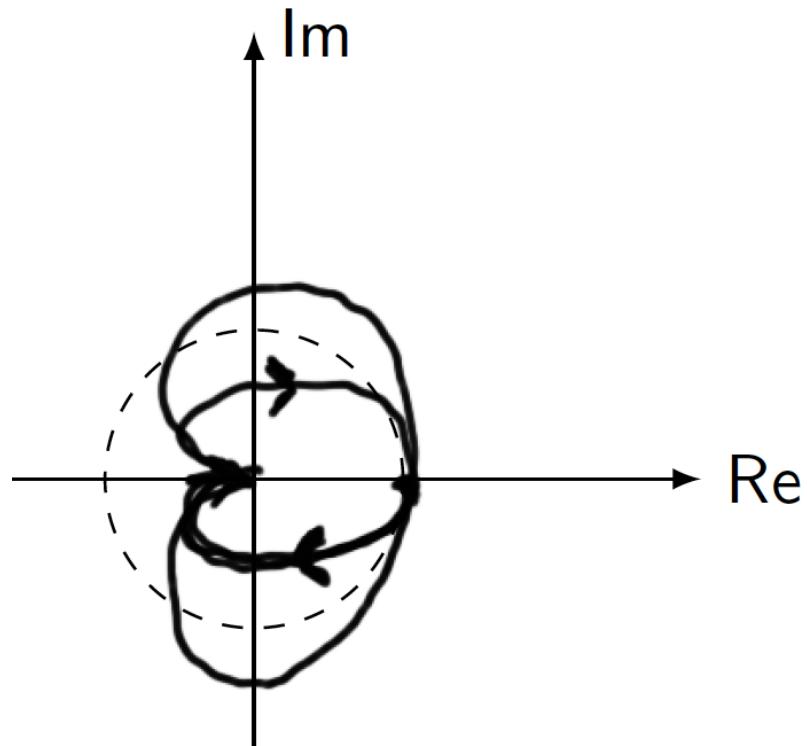
Point	ω	$\angle G$	$ G $
A	.1	0°	1
B	1	-45°	.7
C	3	-90°	.3
D	10	-135°	.07
E	100	-175°	.001



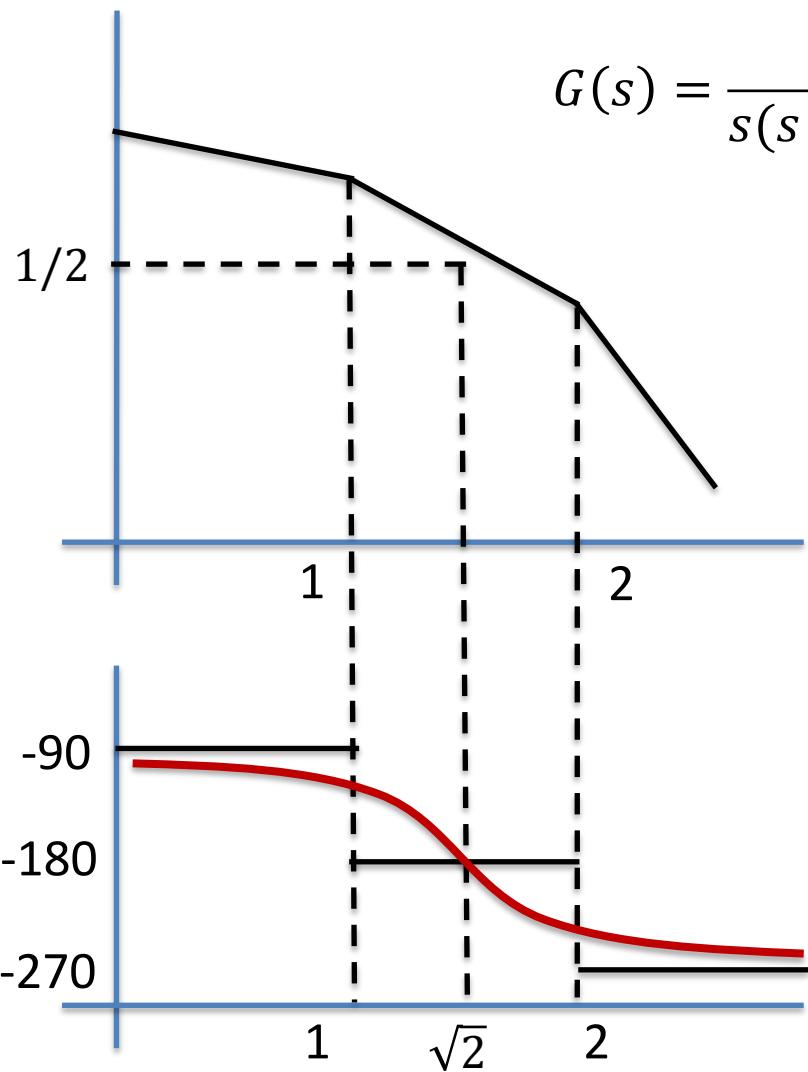
Examples

$$G_1(s) = \frac{1}{(s^2 + 0.5s + 1)}$$

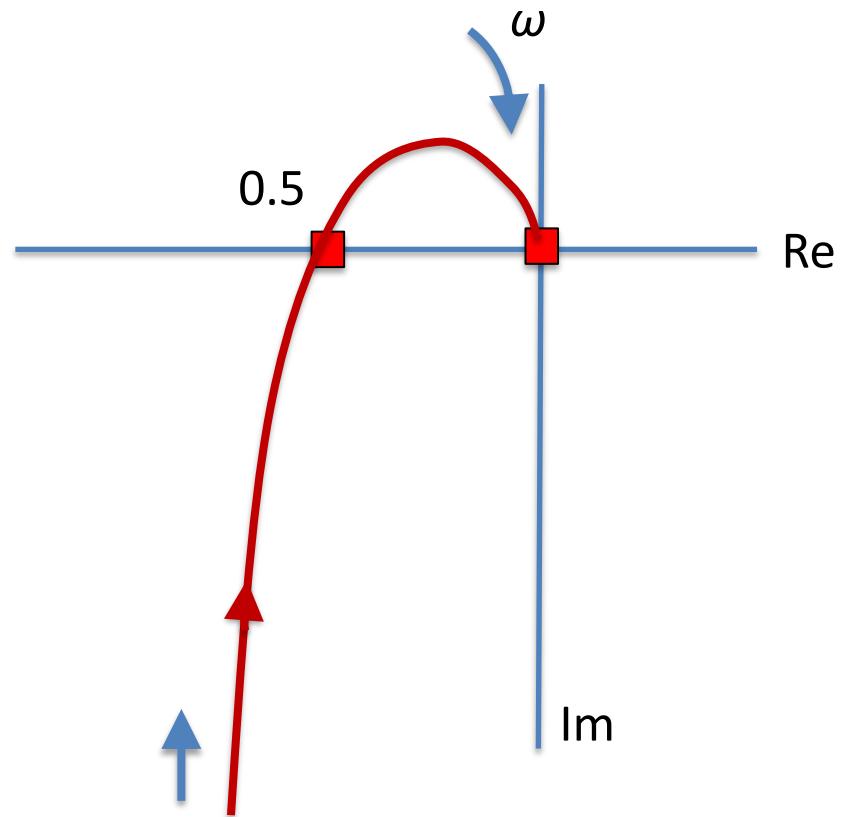
$$G_2(s) = \frac{1}{(s^2 + 2s + 1)}$$



Examples

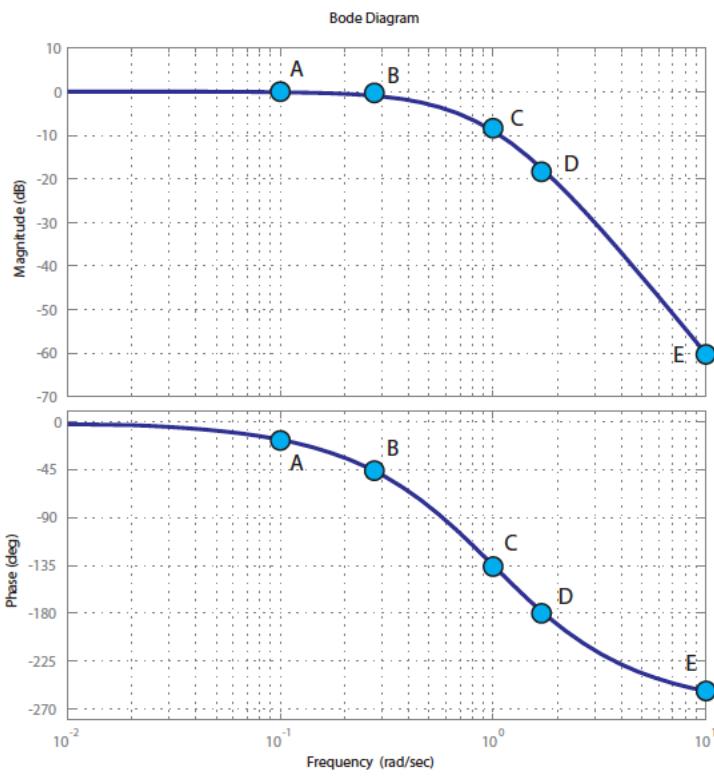


$$G(s) = \frac{3}{s(s+1)(s+2)}$$

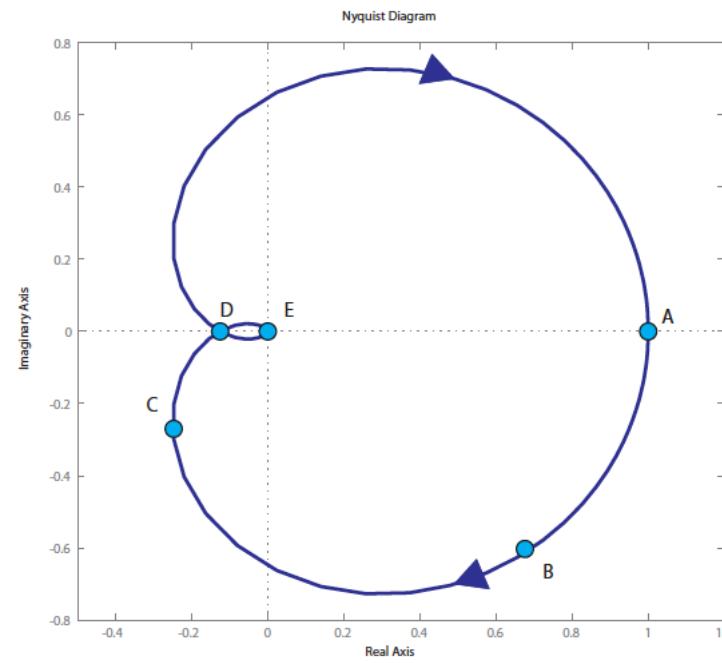


Examples

$$G(s) = \frac{1}{(s + 1)^3}$$

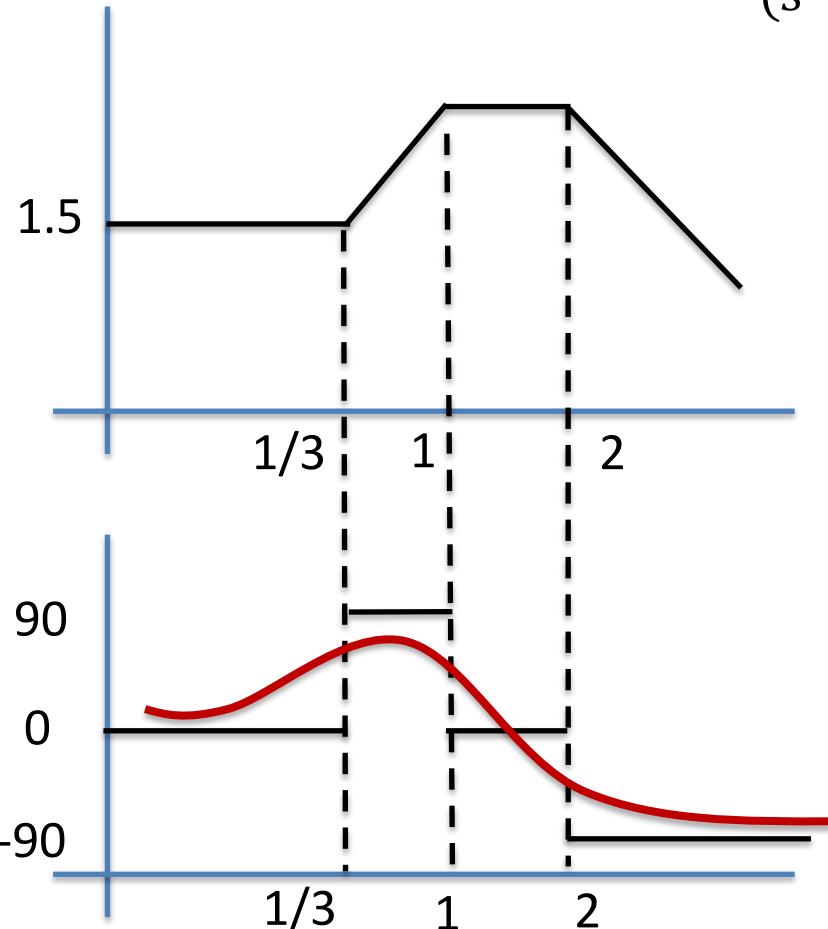
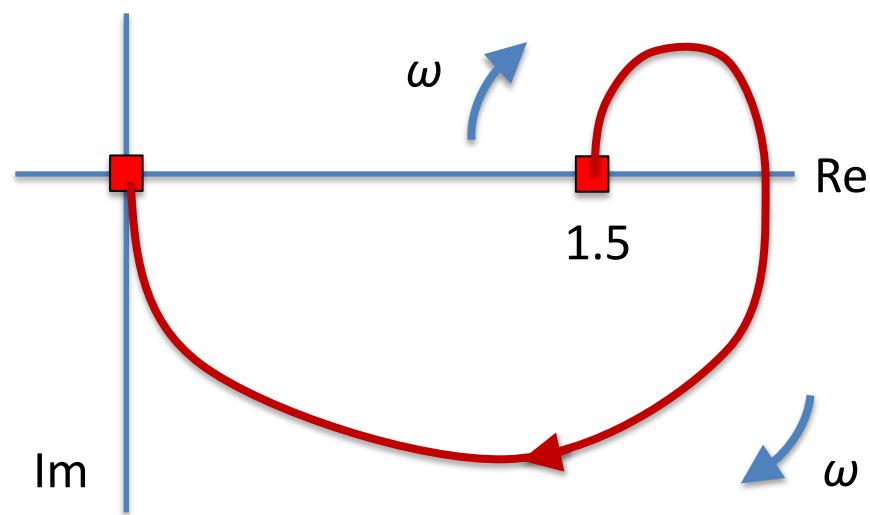


Point	ω	$\angle G$	$ G $
A	.1	0°	1
B	.28	-45°	.95
C	1	-135°	.35
D	1.8	-180°	.1
E	10	-260°	.001

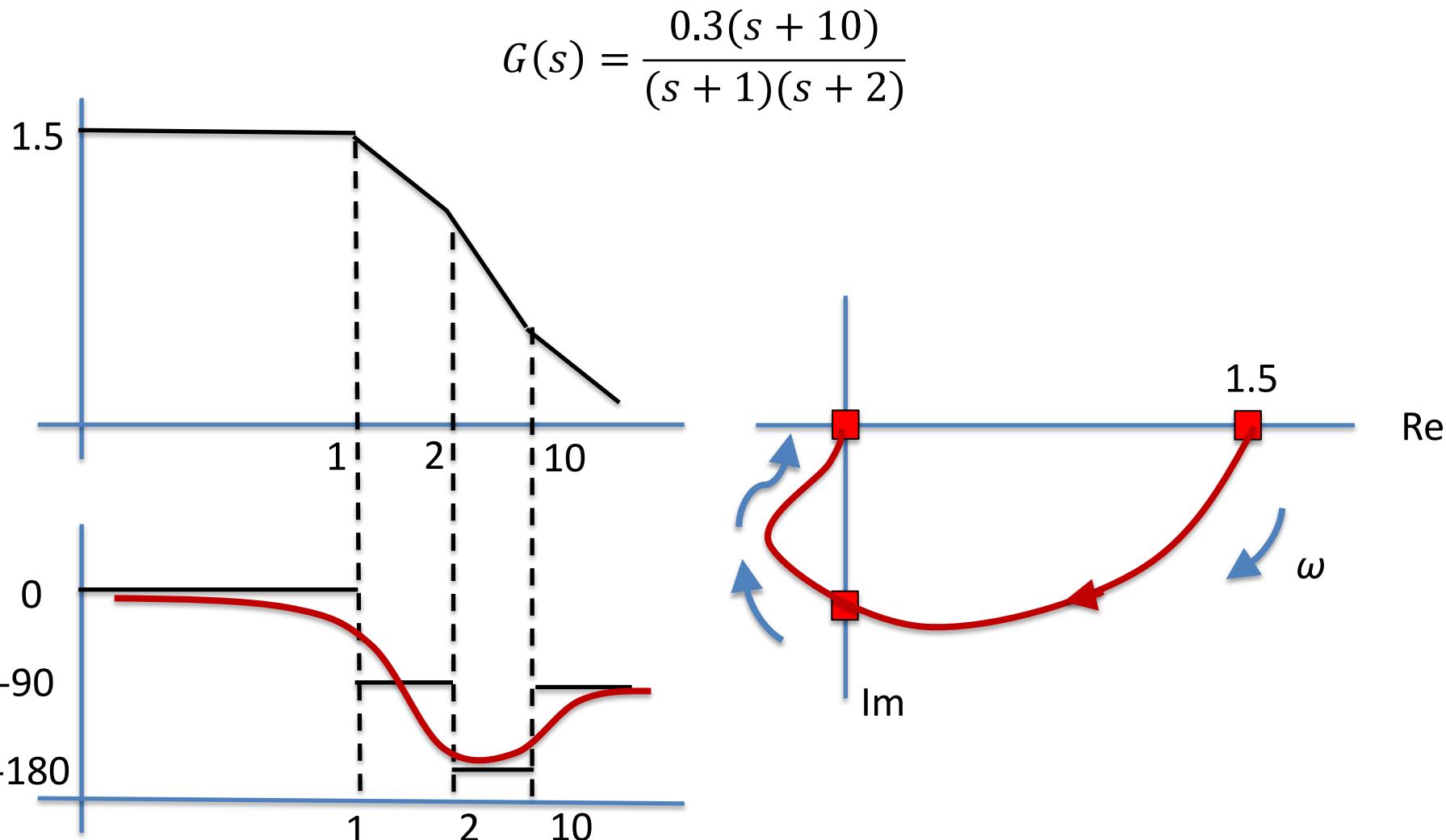


Examples

$$G(s) = \frac{9(s + 1/3)}{(s + 1)(s + 2)}$$



Examples



Examples

- What if we have a time delay?
- Exponential term in the transfer function

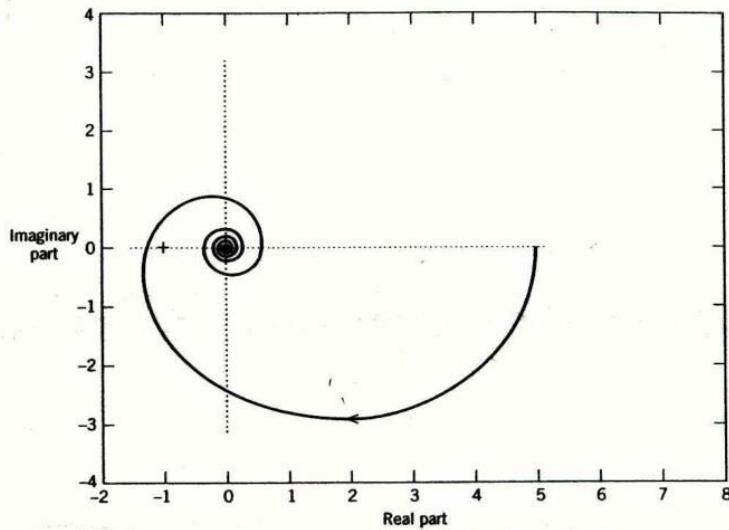


Figure 13.13 The Nyquist diagram for the transfer function in Example 13.5:

$$G(s) = \frac{5(8s+1)e^{-6s}}{(20s+1)(4s+1)}$$