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Bode Form of the Transfer Function
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• Components of transfer functions

• Break points (corner frequency)
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• Bandwidth and Cut-off frequency



Filter Design
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• The objective is to modify certain characteristics of system response
• Magnitude and phase at a certain frequency
• Low-pass filter: cut unwanted high-frequency signals
• High-pass filter: cut unwanted low-frequency components
• Band-pass and notch filter: attenuate specific frequencies
• All-pass filter (phasor effect): only change phase

G(s) F(s)
U(s) Y(s) 



Example
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Ecole Polytechnique Federale de Lausanne Spring 2020

Problem 3

Sketch the Bode plot (magnitude and phase) of the following systems.

a) G(s) =
2se�s

s2 + 3s+ 2

b) G(s) =
s+ 100

s(s+ 20)(s2 + s+ 1)

Problem 4

Consider a mechanical system described by the following di↵erential equation. The system

is initially at rest.

ÿ(t) + ẏ(t) + y(t) = 2u(t)

a) Find the transfer function G(s) of the system and sketch the Bode plot.

b) We would like to design a first order filter F (s) =
K

⌧s+ 1
in a way that the new system

with the transfer function G0
(s) = G(s)⇥F (s) has magnitude |G0

(j!)| = 1 and phase angle

� = �3⇡/4 at frequency ! = 1.

Problem 5

Consider the system described by the following transfer function.

G(s) =
6

(s+ 1)2(s+ 2)

Sketch the Bode diagram first and use the magnitude and phase information to sketch

the Nyquist plot.
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5

Ecole Polytechnique Federale de Lausanne Spring 2019

Problem 4

a) The transfer function can be calculated as:

G(s) =
2

s2 + s+ 1

The second order term has a natural frequency of !0 = 1rad/sec, the damping ratio is
⇣ = 0.5, and the gain is 2. The resonance frequency is !r = !0

p
1� 2⇣2 = 0.707. The

resonant peak is R(!r) =
2

2⇣
p

1� 2⇣2
= 2.31.

b) The filtered system is given by:

G0(s) =
K

⌧s+ 1

2

s2 + s+ 1

The magnitude of the sinusoidal transfer function at ! = 1 must be 1.

|G0(j!)| = 2Kp
⌧ 2!2 + 1

p
(1� !2)2 + !2

! |G(! = 1)| = 2Kp
1 + ⌧ 2

= 1

And the phase angle of the sinusoidal transfer function at ! = 1 must be �3⇡/4.

�(! = 1) = �⇡/2� arctan(⌧) = �3⇡/4

As a result, ⌧ = 1 and K =
p
2/2 = 0.707.

Problem 5

The transfer function is given by

G(s) =
6

(s+ 1)2(s+ 2)

We have a repeated pole at �1 and a pole at �2. We first sketch the Bode plot of this
system.
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Nyquist Plot (or Nyquist Diagram)
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• Commonly used to assess the 
stability of a system
• Nyquist stability criterion

• In Cartesian coordinates, the real 
part of the transfer function is plotted 
on the X axis, and the imaginary part 
is plotted on the Y axis. 

• The frequency is swept as a 
parameter, resulting in a plot based 
on frequency. 



Nyquist Plot
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• Magnitude and phase angle on the same graph
• Polar representation (Argand Diagram) 



Nyquist Plot
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• The frequency response (sinusoidal transfer function) G(jw) is plotted on 
the complex plane as a function of w

• It is convenient to sketch a Bode plot first, so that we can have a good 
idea of what the polar plot looks like

• Important considerations
• Where does the plot intersect with the unit circle

• Where does the plot cross the real axis

𝐺(𝑗𝜔) = 1

𝑎𝑟𝑔 𝐺(𝑗𝜔) = 𝑛 , 180°



Examples
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Re

Im

ω

𝐺 𝑗𝜔 =
1
𝑗𝜔

= −𝑗
1
𝜔

𝐺 𝑠 =
1
𝑠



Examples
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𝐺 𝑠 =
1

𝑠 + 1

Frequency 0.1 0.5 1 2 10
G(jw) 0.99-j0.1 0.8-j0.4 0.5-j0.5 0.2-j0.4 0.01-j0.1

1
Re

Im

ω

𝐺 𝑗𝜔 =
1

𝑗𝜔 + 1
=

1
1 + 𝜔%

− 𝑗
𝜔

1 + 𝜔%



Examples
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𝐺 𝑠 =
3

(𝑠 + 2)

1.5
Re

Im

• First sketch the Bode plot
• Mark the magnitude while following phase angle

1.5

2

2

0

-90

-45

1.5
2

ω



Guidelines for quick sketches

13

• We want to sketch Nyquist diagram from the Bode diagrams

• Phase is decreasing (or becoming negative)
• Plot is moving clockwise

• Phase is increasing
• Plot is moving counterclockwise

• Magnitude is decreasing
• Plot is moving towards the origin

• Magnitude is increasing
• Plot is moving away from the origin



Examples
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𝐺 𝑠 =
3

𝑠(𝑠 + 2)

Re

Im

2

2

-90

-180

-135

3
2 ω



Examples
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1.5
Re

Im

1.5

1

1

0

-90

𝐺 𝑠 =
3

(𝑠 + 1)(𝑠 + 2)

2

2
-180

2

1/ 2

ω
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𝐺 𝑠 =
1

(𝑠 + 1)(0.1𝑠 + 1)



Examples
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𝐺# 𝑠 =
1

𝑠% + 0.5𝑠 + 1 𝐺% 𝑠 =
1

𝑠% + 2𝑠 + 1
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1

1

-90

-180

𝐺 𝑠 =
3

𝑠(𝑠 + 1)(𝑠 + 2)

2

2
-270

2
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𝐺 𝑠 =
1

(𝑠 + 1)+



Examples
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1.5
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Im
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1/3

1

90

0

𝐺 𝑠 =
9(𝑠 + 1/3)
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2
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1

1/3

ω
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1.5
Re

Im

1.5

1

0

-90

𝐺 𝑠 =
0.3(𝑠 + 10)
(𝑠 + 1)(𝑠 + 2)

2

2
-180

1 10

10
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Examples
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• What if we have a time delay?
• Exponential term in the transfer function 


